Math 199 CD2: Linear Approximation

Remember, $\Delta = \text{difference}$ Newton's method
is actually different. October 5, 2021

1. Approximate the following quantity using **Approximate the following quantity using Approximate the following the** tion, explitcitly describe what is f and a:

(a)
$$\sqrt{16.2}$$

(b) $\sin(0.1)$

(c) $\sqrt{16.2}$

(a) $\sqrt{16.2}$

(b) $\sin(0.1)$

(c) $\sqrt{16.2}$

(d) $\sqrt{16.2}$

(e) $\sqrt{16.2}$

(f) $\sqrt{16.2}$

(g) $\sqrt{16.2}$

(h) $\sqrt{$

(b)
$$\sin(0.1)$$

(c) $f(x) = \sin x$, $x = 0$, $\Delta x = 0.1$

(c) $f(x) = \sin x$, $x = 0$, $\Delta x = 0.1$

(d) $f(x) = \sin x$, $f(x) = \sin x$,

(c)
$$\sqrt[3]{124}$$
 $f(x) = \sqrt[3]{x} = \sqrt$

$$\Delta x = \frac{1}{125}, x = 125$$

$$= 2 \cdot \frac{1}{125} = \frac{3}{125} = \frac{3}{125} = \frac{1}{125} = \frac{1}{12$$

(d)
$$\sin(\pi/3) = \frac{\sqrt{3}}{2}$$

Forget this one

2. A cubical box is to be built so that it holds 125 cubic inches. How precisely should the edge be made so that the volume will be correct to within 3 cubic inches?

$$\Delta V = 3 \text{ inch}^3$$
, $r = 5$
 $V = r^3 \Rightarrow \frac{dV}{dr} = 3r^2$
 $= 3 \Rightarrow 3 = \frac{dV}{dr} = 3r \Rightarrow 3 = 3.(5)^2$. Ar

 $= 3 \Rightarrow 3 = \frac{dV}{dr} = 3r \Rightarrow 3 = 3.(5)^2$. Ar

 $= 3 \Rightarrow 3 = \frac{dV}{dr} = 3r \Rightarrow 3 = 3.(5)^2$

3. A solid steel cylinder has a radius of 2.5 cm and a height of 10 cm. A tight-fitting sleeve is to be made that will extend the radius to 2.6cm. Find the amount of steel needed for the sleeve.

$$V = \pi r^{2}h = 10\pi r^{2}$$

$$(et r = 2.5 \text{ & } \Delta r = 0.1$$

$$\Delta V = 10\pi (2.6)^{2} - 10\pi (2.5)^{2}$$

$$\frac{dV}{dr} = 20\pi r \Rightarrow \frac{dV}{dr} \cdot \Delta r = 20\pi \cdot 2.5 \cdot 0.1$$

$$= 5\pi$$

$$=) \text{ By appx. principle}$$

$$\Delta V = 5\pi + 40\pi (2.5)^{2}$$