
Math 199 CD2: Limit and ✏-�

August 31, 2021

1. Let E(h) = h3
. We want to show lim

h!0
E(h) = 0.

(a) If ✏ = 1, then find � so that when 0 < |h| < �, we know |E(h)| < ✏.

(b) If ✏ = 1
8 , then find � so that when 0 < |h| < �, we know |E(h)| < ✏.

(c) If we ✏ is not given explicitly, find � in terms of ✏ so that when 0 < |h| < �, we know |E(h)| < ✏.

2. For each of the following, use the ✏-� definition of the limit to show that the limit does not exist. Use

words!
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x!0

|x|
x
.
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(b) lim
x!1

bxc where bxc is x rounded down to the nearest integer. For example, b1.7c = b1.2c = 1,

b�1/2c = b�2/3c = �1

3. We want to show that lim
x!2

(2� 3x) = �4.

(a) Fill in the blanks to set up the problem using a limit of zero at zero.

Let E(h) = (2� 3(2 + h))� (�4) = �3h. We say that has limit at if

for every challenge number ✏ > 0,

there is a response number � > 0 such that

if the input is strictly between and , but is not equal to ,

then the output will be strictly between and .

(b) Fill in the blanks to set up the problem using the traditional definition of the limit.

We say that has limit at if

for every challenge number ✏ > 0,

there is a response number � > 0 such that

if 0 < < �,

then < ✏.

(c) How are these two limit definitions the same? How are they di↵erent? Discuss with your group.

(d) Use either method to show lim
x!2

(2� 3x) = �4.
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4. Suppose lim
x!0

E(x) = 0. Use the ✏-� definition of a limit to prove the following:

(a) lim
x!0

2E(x) = 0

(b) lim
x!0

E(2x) = 0
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