Math 199 CD2: Limit and e-¢

August 31, 2021

1. Let E(h) = h®. We want to show }llin%) E(h) = 0.
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(a) If e = 1, then find ¢ so that when 0 < |h| < §, we know |E(h)| < e.
EW] L1 <l © 4 B <L o -1¢hed

) ol <t

S $=4

(b) If € = 4, then find § so that when 0 < |h| < §, we know |E(h)| < e.
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(c) If we € is not given explicitly, find ¢ in terms of € so that when 0 < |h| < 4§, we know |E(h)| < e.
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2. For each of the following, use the e-§ definition of the limit to show that the limit does not exist. Use
words!
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(b) li_>m1 |z] where |z] is  rounded down to the nearest integer. For example, [1.7] = |1.2] = 1,
|-1/2] = |-2/3] = —1 s —~
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3. We want to show that lirr12(2 —3z) = —4.
z—

(a) Fill in the blanks to set up the problem using a limit of zero at zero.
Let E(h) = (2—3(2+h)) — (—4) = —3h. We say that m haslimit O at (J  if
for every challenge number € > 0,
there is a response number ¢ > 0 such that
if the input ‘c\i is strictly between -% and _S§ | but . is not equalto _0
then the output & will be strictly between —& and _&
(b) Fill in the blanks to set up the problem using the traditional definition of the limit.
We say that 4’:& ):?'f;;;(s limit —4 at & if
for every challenge number € > 0,

there is a response number § > 0 such that

iro < [x-2l <,
then &%(\A’f‘{\ < e.

(¢) How are these two limit definitions the same? How are they different? Discuss with your group.

(d) Use either method to show lir112(2 —3z) = —4.
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4. Suppose lir% E(z) = 0. Use the e-6 definition of a limit to prove the following:
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