Math 199 CD2: Limit and ϵ - δ ## August 31, 2021 - 1. Let $E(h) = h^3$. We want to show $\lim_{h\to 0} E(h) = 0$. (a) If $$\epsilon = 1$$, then find δ so that when $0 < |h| < \delta$, we know $|E(h)| < \epsilon$. $$|E(h)| < |E^3| |E^$$ (b) If $\epsilon = \frac{1}{8}$, then find δ so that when $0 < |h| < \delta$, we know $|E(h)| < \epsilon$. 1831 < \$ 60 = 1 < 83 < 10 = 1 < 8< 2 = 0 0 < 181 < 12 $$S = \frac{1}{8}$$ (c) If we ϵ is not given explicitly, find δ in terms of ϵ so that when $0 < |h| < \delta$, we know $|E(h)| < \epsilon$. 2. For each of the following, use the ϵ - δ definition of the limit to show that the limit does not exist. Use words! (a) $$\lim_{x\to 0} \frac{|x|}{x}$$. Plot out the function (et $\mathcal{E}=0.5$ can you find any Let $$E = 0.5$$ can you find any S to create a box - 3. We want to show that $\lim_{x\to 2} (2-3x) = -4$. - (a) Fill in the blanks to set up the problem using a limit of zero at zero. Let E(h) = (2-3(2+h)) - (-4) = -3h. We say that f(h) has limit _____ at ____ if for every challenge number $\epsilon > 0$, there is a response number $\delta > 0$ such that - if the input $\frac{1}{k}$ is strictly between $\frac{1}{k}$ and $\frac{1}{k}$, but $\frac{1}{k}$ is not equal to $\frac{1}{k}$. then the output $\underline{\mathcal{E}(h)}$ will be strictly between $\underline{\mathcal{E}}$ and $\underline{\mathcal{E}}$. - (b) Fill in the blanks to set up the problem using the traditional definition of the limit. We say that $\frac{2}{100}$ has limit $\frac{4}{100}$ at $\frac{2}{100}$ if for every challenge number $\epsilon > 0$, there is a response number $\delta > 0$ such that if $$0 < \frac{|x - \mathcal{L}|}{|x - \mathcal{L}|} < \delta$$, then $\frac{|f(x) + 4|}{|f(x) + 4|} < \epsilon$. - (c) How are these two limit definitions the same? How are they different? Discuss with your group. - (d) Use either method to show $\lim_{x\to 2} (2-3x) = -4$. Apply argument $$|f(x) + 4| < \xi$$ (=) $|2 - 3x + 4| < \xi$ (=) $|-3x + 6| < \xi$ (=) $|-2 < -3x + 6| < \xi$ (=) $|-3x 4. Suppose $\lim_{x\to 0} E(x) = 0$. Use the ϵ - δ definition of a limit to prove the following: (a) $$\lim_{x\to 0} 2E(x) = 0$$ $\lim_{x\to 0} E(x) = 0$ then for all $E > 0$, which $E(x) = 0$ then for all $E > 0$, which $E(x) = 0$ then for all $E > 0$, which $E(x) = 0$ then $E(x) = 0$ then for all $E > 0$, which $E(x) = 0$ then