Math 199 CD2: Limit and ϵ - δ

August 31, 2021

- 1. Let $E(h) = h^3$. We want to show $\lim_{h\to 0} E(h) = 0$.

(a) If
$$\epsilon = 1$$
, then find δ so that when $0 < |h| < \delta$, we know $|E(h)| < \epsilon$.
$$|E(h)| < |E^3| < |E^$$

(b) If $\epsilon = \frac{1}{8}$, then find δ so that when $0 < |h| < \delta$, we know $|E(h)| < \epsilon$. 1831 < \$ 60 = 1 < 83 < 10 = 1 < 8< 2 = 0 0 < 181 < 12

$$S = \frac{1}{8}$$

(c) If we ϵ is not given explicitly, find δ in terms of ϵ so that when $0 < |h| < \delta$, we know $|E(h)| < \epsilon$.

2. For each of the following, use the ϵ - δ definition of the limit to show that the limit does not exist. Use words!

(a)
$$\lim_{x\to 0} \frac{|x|}{x}$$
. Plot out the function
 (et $\mathcal{E}=0.5$ can you find any

Let
$$E = 0.5$$
 can you find any S to create a box

- 3. We want to show that $\lim_{x\to 2} (2-3x) = -4$.
 - (a) Fill in the blanks to set up the problem using a limit of zero at zero. Let E(h) = (2-3(2+h)) - (-4) = -3h. We say that f(h) has limit _____ at ____ if for every challenge number $\epsilon > 0$,

there is a response number $\delta > 0$ such that

- if the input $\frac{1}{k}$ is strictly between $\frac{1}{k}$ and $\frac{1}{k}$, but $\frac{1}{k}$ is not equal to $\frac{1}{k}$. then the output $\underline{\mathcal{E}(h)}$ will be strictly between $\underline{\mathcal{E}}$ and $\underline{\mathcal{E}}$.
- (b) Fill in the blanks to set up the problem using the traditional definition of the limit. We say that $\frac{2}{100}$ has limit $\frac{4}{100}$ at $\frac{2}{100}$ if

for every challenge number $\epsilon > 0$,

there is a response number $\delta > 0$ such that

if
$$0 < \frac{|x - \mathcal{L}|}{|x - \mathcal{L}|} < \delta$$
,
then $\frac{|f(x) + 4|}{|f(x) + 4|} < \epsilon$.

- (c) How are these two limit definitions the same? How are they different? Discuss with your group.
- (d) Use either method to show $\lim_{x\to 2} (2-3x) = -4$.

Apply argument
$$|f(x) + 4| < \xi$$
(=) $|2 - 3x + 4| < \xi$
(=) $|-3x + 6| < \xi$
(=) $|-2 < -3x + 6| < \xi$
(=) $|-3x + 6| < \xi$
(=)

4. Suppose $\lim_{x\to 0} E(x) = 0$. Use the ϵ - δ definition of a limit to prove the following:

(a)
$$\lim_{x\to 0} 2E(x) = 0$$
 $\lim_{x\to 0} E(x) = 0$ then for all $E > 0$, which $E(x) = 0$ then for all $E > 0$, which $E(x) = 0$ then for all $E > 0$, which $E(x) = 0$ then $E(x) = 0$ then for all $E > 0$, which $E(x) = 0$ then $E(x) = 0$ then