Math 199 CD2: Asymptotics and Limit at Infinity

September 2, 2021

- 1. Show that the following equation has at least 1 solution using intermediate value theorem:
 - (a) $x^3 + x + 1 = 0$

(b)
$$x^5 + x^2 + 1 = 0$$

2. Calculate $\lim_{x \to 0} x \sin\left(\frac{1}{x}\right)$.

- 3. In each part below, invent a function f(x) with the desired properties, or show no such function can exist.
 - (a) $\lim_{x\to\infty} f(x) x = \infty$ and $\lim_{x\to\infty} 2x f(x) = \infty$. Hint: Think of function in the form f(x) = cx where c is a constant

(b) $\lim_{x\to\infty} f(x) - x = 2$ and $\lim_{x\to\infty} 2x - f(x) = 2$. Hint: Limit summation might be helpful here

(c) $\lim_{x\to\infty} f(x) = 0$ and $\lim_{x\to\infty} e^x f(x) = \infty$.

(d)
$$\lim_{x \to \infty} f(x) = \infty$$
 and $\lim_{x \to \infty} \frac{f(x)}{\ln(x)} = 0.$

- 4. Exponentials are faster than polynomials. In this problem you will prove that (growing) exponential functions grow faster than polynomials, a fact that you can cite later and will be very useful.
 - (a) Expand $(x + y)^4$. Recall 'binomial theorem':

$$(x+y)^{n} = \binom{n}{0}x^{n}y^{0} + \binom{n}{1}x^{n-1}y + \dots + \binom{n}{n}x^{0}y^{n} = \sum_{i=1}^{n}\binom{n}{i}x^{i}y^{n-i}$$

where:

$$\binom{n}{i} = \frac{n!}{i!(n-i)!}$$

(b) Use the binomial theorem to show that if $\alpha \ge 0$, then $(1+\alpha)^n \ge 1+n\alpha+\frac{n(n-1)}{2}\alpha^2$.

(c) Calculate $\lim_{n\to\infty} \frac{n}{(1+\alpha)^n}$ using (b). I'm looking for the "squeez"

(d) Show that $\lim_{x\to\infty} \frac{x^2}{2^x} = 0$ using (c) and the transformation $\lim_{x\to\infty} \frac{x^2}{2^x} = \left(\lim_{x\to\infty} \frac{x}{(\sqrt{2})^x}\right)^2$

(e) Show that
$$\lim_{x\to\infty} \frac{x^a}{c^x} = 0$$
 for any $a \ge 0$ and $c > 1$.

5. Computing more Limits

(a)
$$\lim_{x \to \infty} \frac{x^3 - 2}{3x^2 + 4x - 1}$$

(b)
$$\lim_{x \to \infty} \frac{2x^2 - x + 1}{4x^2 - 3x - 1}$$

(c)
$$\lim_{x \to \infty} \frac{2x^2 - 1}{4x^3 - 5x - 1}$$

(d) $e^{-3x}\cos x$

- 6. Little-o Notation. The following notation is not taught in this course, but it is essential for any engineer or computer scientist. We say that f(x) = o(g(x)) if $\lim_{x\to\infty} \frac{f(x)}{g(x)} = 0$ (in this sense, f grows more slowly than g). The '=' used here is not a true equality, as many distinct functions can be o(g(x)). Confirm the following. You don't need to finish the whole problem but it's a good practice.
 - (a) $x = o(x^2)$ and $x^{3/2} + \sqrt{x} = o(x^2)$.
 - (b) For any $\alpha, \beta > 0, x^{\alpha} = o(x^{\alpha+\beta}).$
 - (c) For any $a \ge 0$ and c > 1, $x^a = o(c^x)$.
 - (d) $\ln(x) = o(x)$. Use the previous part but it's a bit tricky! A useful identity that you will use a lot is $x = e^{\ln(x)}$. Make it a fun exercise to verify this identity but feel free to just use it for now in this problem
 - (e) For any $\alpha > 0$, $\ln(x) = o(x^{\alpha})$. (Use a clever change of variables.)

(f)
$$2^x = o(3^x)$$
.

- (g) For any c > d > 1, $d^x = o(c^x)$.
- (h) $\ln(\ln(x)) = o(\ln(x)).$
- (i) $e^{\sqrt{\ln(x)}} = o(\sqrt{x}).$
- (j) For any $\alpha > 0$, $e^{\sqrt{\ln(x)}} = o(x^{\alpha})$.
- (k) $\ln(x) = o(e^{\sqrt{\ln(x)}})$

(l)
$$c^x = o(x^x)$$
.

Conclusions: logarithms are slower than polynomials, which are slower than exponentials. But there are still functions slower, faster, and in between.