Math 199 CD2: Asymptotics and Limit at Infinity

September 2, 2021

1. Show that the following equation has at least 1 solution using intermediate value theorem:

orem:

(a)
$$x^{3} + x + 1 = 0$$

$$\begin{cases}
f(x) = x^{3} + x + 1 \\
g(x) = 8 + 2 + 1 = 11
\end{cases}$$

$$g(-2) = -8 - 2 + (=-10)$$

$$g(-2) = -8 - 2 + (=-10)$$

$$g(x) = 8 + 2 + 1 = 11$$

$$f(x) = 8 + 2 + 1 = 11$$

$$f(x) = 8 + 2 + 1 = 11$$

$$f(x) = 8 + 2 + 1 = 11$$

$$f(x) = 8 + 2 + 1 = 11$$

$$f(x) = 8 + 2 + 1 = 11$$

$$f(x) = 8 + 2 + 1 = 11$$

$$f(x) = 8 + 2 + 1 = 11$$

$$f(x) = 8 + 2 + 1 = 11$$

$$f(x) = 8 + 2 + 1 = 11$$

$$f(x) = 8 + 2 + 1 = 11$$

$$f(x) = 8 + 2 + 1 = 11$$

$$f(x) = 8 + 2 + 1 = 11$$

$$f(x) = 8 + 2 + 1 = 11$$

$$f(x) = 8 + 2 + 1 = 11$$

$$f(x) = 8 + 2 + 1 = 11$$

$$f(x) = 8 + 2 + 1 = 11$$

$$f(x) = 8 + 2 + 1 = 11$$

$$f(x) = 8 + 2 + 1 = 11$$

$$f(x) = 8 + 2 + 1 = 11$$

$$f(x) = 8 + 2 + 1 = 11$$

$$f(x) = 8 + 2 + 1 = 11$$

$$f(x) = 8 + 2 + 1 = 11$$

$$f(x) = 8 + 2 + 1 = 11$$

$$f(x) = 8 + 2 + 1 = 11$$

$$f(x) = 8 + 2 + 1 = 11$$

$$f(x) = 8 + 2 + 1 = 11$$

$$f(x) = 8 + 2 + 1 = 11$$

$$f(x) = 8 + 2 + 1 = 11$$

$$f(x) = 8 + 2 + 1 = 11$$

$$f(x) = 8 + 2 + 1 = 11$$

$$f(x) = 8 + 2 + 1 = 11$$

$$f(x) = 8 + 2 + 1 = 11$$

$$f(x) = 8 + 2 + 1 = 11$$

$$f(x) = 8 + 2 + 1 = 11$$

$$f(x) = 8 + 2 + 1 = 11$$

$$f(x) = 8 + 2 + 1 = 11$$

$$f(x) = 8 + 2 + 1 = 11$$

$$f(x) = 8 + 2 + 1 = 11$$

$$f(x) = 8 + 2 + 1 = 11$$

$$f(x) = 8 + 2 + 1 = 11$$

$$f(x) = 8 + 2 + 1 = 11$$

$$f(x) = 8 + 2 + 1 = 11$$

$$f(x) = 8 + 2 + 1 = 11$$

$$f(x) = 8 + 2 + 1 = 11$$

$$f(x) = 8 + 2 + 1 = 11$$

$$f(x) = 8 + 2 + 1 = 11$$

$$f(x) = 8 + 2 + 1 = 11$$

$$f(x) = 8 + 2 + 1 = 10$$

$$f(x) = 8 + 2 + 1 = 10$$

$$f(x) = 8 + 2 + 1 = 10$$

$$f(x) = 8 + 2 + 1 = 10$$

$$f(x) = 8 + 2 + 1 = 10$$

$$f(x) = 8 + 2 + 1 = 10$$

$$f(x) = 8 + 2 + 1 = 10$$

$$f(x) = 8 + 2 + 1 = 10$$

$$f(x) = 8 + 2 + 1 = 10$$

$$f(x) = 8 + 2 + 1 = 10$$

$$f(x) = 8 + 2 + 1 = 10$$

$$f(x) = 8 + 2 + 1 = 10$$

$$f(x) = 8 + 2 + 1 = 10$$

$$f(x) = 8 + 2 + 1 = 10$$

$$f(x) = 8 + 2 + 1 = 10$$

$$f(x) = 8 + 2 + 1 = 10$$

$$f(x) = 8 + 2 + 1 = 10$$

$$f(x) = 8 + 2 + 1 = 10$$

$$f(x) = 8 + 2 + 1 = 10$$

$$f(x) = 8 + 2 + 1 = 10$$

$$f(x) = 8 + 2 + 1 = 10$$

$$f(x) = 8 + 2 + 1 = 10$$

$$f(x) = 8 + 2 + 1 = 10$$

$$f(x) = 8 + 2 + 1 = 10$$

$$f(x) = 8 + 2 + 1 = 10$$

$$f(x)$$

2. Calculate $\lim_{x\to 0} x \sin\left(\frac{1}{x}\right)$.

$$-(\le \sin\left(\frac{1}{x}\right) \le 1$$

$$-x \le x \sin\left(\frac{1}{x}\right) \le x$$

$$0 = \lim_{x \to 0} -x \le \lim_{x \to 0} x \sin\left(\frac{1}{x}\right) \le \lim_{x \to 0} x = 0$$

$$= 0.$$

- 3. In each part below, invent a function f(x) with the desired properties, or show no such function can exist.
 - (a) $\lim_{x\to\infty} f(x) x = \infty$ and $\lim_{x\to\infty} 2x f(x) = \infty$. Hint: Think of function in the form f(x) = cx where c is a constant

$$f(x) = \frac{3}{2}x$$

(b) $\lim_{x\to\infty} f(x) - x = 2$ and $\lim_{x\to\infty} 2x - f(x) = 2$. Hint: Limit summation might be helpful here

lpful here
$$\lim_{x\to\infty} \left[(f(x) - x) + (2x - f(x)) \right] = \lim_{x\to\infty} x = \infty$$

$$\lim_{x\to\infty} \left[\left(f(x) - x \right) + \left(2x - f(x) \right) \right] = 4$$

(c) $\lim_{x \to \infty} f(x) = 0$ and $\lim_{x \to \infty} e^x f(x) = \infty$.

$$e^{\frac{1}{2}x}$$
 or $\frac{1}{x}$ would work (Check)

(d) $\lim_{x \to \infty} f(x) = \infty$ and $\lim_{x \to \infty} \frac{f(x)}{\ln(x)} = 0$.

- 4. Exponentials are faster than polynomails. In this problem you will prove that (growing) exponential functions grow faster than polynomials, a fact that you can cite later and will be very useful.
 - (a) Expand $(x+y)^4$. Recall 'binomial theorem':

$$(x+y)^n = \binom{n}{0}x^ny^0 + \binom{n}{1}x^{n-1}y + \dots + \binom{n}{n}x^0y^n = \sum_{i=1}^n \binom{n}{i}x^iy^{n-i}$$
 small where:
$$\binom{n}{i} = \frac{n!}{i!(n-i)!}$$

$$\binom{x+y}{i} \rightarrow 1$$

$$\binom{x$$

(b) Use the binomial theorem to show that if
$$\alpha \geq 0$$
, then $(1+\alpha)^n \geq 1 + n\alpha + \frac{n(n-1)}{2}\alpha^2$.

$$(1+\alpha)^n = (1+\binom{n}{2})^n + \binom{n}{2}^n + \binom{n}{3}^n +$$

(c) Calculate $\lim_{n\to\infty} \frac{n}{(1+\alpha)^n}$ using (b). I'm looking for the "squeez" 0 < lim now (1+a)n < lim now (1+na+n(n-1) 2 = 0

(d) Show that $\lim_{x\to\infty} \frac{x^2}{2^x} = 0$ using (c) and the transformation

$$\lim_{x\to\infty}\frac{x^2}{2^x}=\left(\lim_{x\to\infty}\frac{x}{(\sqrt{2})^x}\right)^2$$
 Since $\sqrt{2}>1$ We have this limit is 0 by Part (c)

(e) Show that
$$\lim_{x\to\infty}\frac{x^a}{c^x}=0$$
 for any $a\geq 0$ and $c>1$. $a>0$ is easy since $\sum_{x\to\infty}\lim_{c\to\infty}\frac{1}{c^x}=0$

On the other hand
$$a>0 \Rightarrow \lim_{x\to\infty} \frac{x}{c^x} = \lim_{x\to\infty} \left(\frac{x}{(c^{1/a})^x}\right) = 0 \text{ by } (c)$$

$$c>1 \text{ g } c^{1/a} > 1 \text{ (verify this)}$$

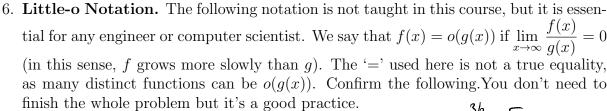
5. Computing more Limits

$$\lim_{x \to \infty} \frac{x^3 - 2}{3x^2 + 4x - 1} = \lim_{x \to \infty} \frac{1 - \frac{2}{x^3}}{\frac{3}{x} + \frac{4}{x^2} - \frac{1}{x^3}} = \infty$$

$$\lim_{x \to \infty} \frac{2x^2 - x + 1}{4x^2 - 3x - 1} = \lim_{x \to \infty} \frac{2 - \frac{1}{x} + \frac{1}{x^2}}{4 - \frac{3}{x} - \frac{1}{x^2}} = \frac{1}{2}.$$

$$\lim_{x \to \infty} \frac{2x^2 - 1}{4x^3 - 5x - 1} \qquad \frac{2 - \frac{1}{x^2}}{4x - \frac{5}{x} - \frac{1}{x^2}} \qquad = 0$$

(d)
$$e^{-3x}\cos x$$



(a)
$$x = o(x^2)$$
 and $x^{3/2} + \sqrt{x} = o(x^2)$. $\lim_{x \to \infty} \frac{x}{x^2} = 0$ $\lim_{x \to \infty} \frac{x^3h + \sqrt{x}}{x^2} = 0$

(b) For any
$$\alpha, \beta > 0$$
, $x^{\alpha} = o(x^{\alpha+\beta})$. $\lim_{\alpha \to 0} \frac{x^{\alpha}}{x^{\alpha+\beta}} \geq 0$ Since $\beta > 0$

(b) For any
$$\alpha, \beta > 0$$
, $x^{\alpha} = o(x^{\alpha+\beta})$. $x^{\alpha} = o(x^{\alpha+\beta})$. $x^{\alpha} = o(x^{\alpha+\beta})$. (c) For any $\alpha \ge 0$ and $\alpha > 1$, $x^{\alpha} = o(x^{\alpha})$. $x^{\alpha} = o(x^{\alpha+\beta})$.

(d) $\ln(x) = o(x)$. Use the previous part but it's a bit tricky! A useful identity that you will use a lot is $x = e^{\ln(x)}$. Make it a fun exercise to verify this identity but feel free to just use it for now in this problem

feel free to just use it for now in this problem $\lim_{x\to\infty} \frac{\ln(x)}{x} = \lim_{x\to\infty} \frac{\ln(x)}{x} = \lim_{x\to\infty} \frac{\ln(x)}{x} = 0$ (e) For any $\alpha > 0$, $\ln(x) = o(x^{\alpha})$. (Use a clever change of variables.) $\lim_{x\to\infty} \frac{\ln(x)}{x^{\alpha}} = \lim_{x\to\infty} \frac{\ln(x)}{x^{\alpha}} = \lim_$

(f)
$$2^x = o(3^x)$$
. $2^{\times} = 0$ (why?)

(h)
$$\ln(\ln(x)) = o(\ln(x))$$
. $\xrightarrow{\times \to \infty}$ (c) $\ln(y) = 0$ by (d)

$$\lim_{x \to \infty} \frac{\ln x}{x^{\alpha}} = \lim_{x \to \infty} \frac{\ln x}{e^{\ln x^{\alpha}}} = \lim_{x \to \infty} \frac{\ln x}{(e^{\alpha})^{\ln x}} = \lim_{y \to \infty} \frac{1}{(e^{\alpha})^{y}}$$
(f) $2^{x} = o(3^{x})$. $2^{x} = 0$ (why?).

(g) For any $c > d > 1$, $d^{x} = o(c^{x})$. $\lim_{x \to \infty} \frac{1}{e^{x}} = 0$ (h) $\lim_{x \to \infty} \frac{1}{e^{x}} = \lim_{x \to \infty} \frac{1}{e^{x}} = 0$ (h) $\lim_{x \to \infty} \frac{1}{e^{x}} = \lim_{x \to \infty} \frac{1}{e^{x}} = 0$ (h) $\lim_{x \to \infty} \frac{1}{e^{x}} = \lim_{x \to \infty} \frac{1}{e^{x}} = 0$ (h) $\lim_{x \to \infty} \frac{1}{e^{x}} = \lim_{x \to \infty} \frac{1}{e^{x}} = 0$ (h) $\lim_{x \to \infty} \frac{1}{e^{x}} = \lim_{x \to \infty} \frac{1}{e^{x}} = 0$ (h) $\lim_{x \to \infty} \frac{1}{e^{x}} = \lim_{x \to \infty} \frac{1}{e^{x}} = \lim_{x \to \infty} \frac{1}{e^{x}} = 0$ (h) $\lim_{x \to \infty} \frac{1}{e^{x}} = \lim_{x \to \infty} \frac{1}{e^{x}} = \lim_{x \to \infty} \frac{1}{e^{x}} = \lim_{x \to \infty} \frac{1}{e^{x}} = 0$ (h) $\lim_{x \to \infty} \frac{1}{e^{x}} = \lim_{x \to \infty} \frac{1}{e^{x}} = \lim_{x \to \infty} \frac{1}{e^{x}} = 0$ (h) $\lim_{x \to \infty} \frac{1}{e^{x}} = \lim_{x \to \infty} \frac{1}{e^{x}} = 0$ (h) $\lim_{x \to \infty} \frac{1}{e^{x}} = \lim_{x \to \infty} \frac{1}{e^{x}} = 0$ (h) $\lim_{x \to \infty} \frac{1}{e^{x}} = \lim_{x \to \infty} \frac{1}{e^{x}} = 0$ (h) $\lim_{x \to \infty} \frac{1}{e^{x}} = 0$ (h)

(j) For any
$$\alpha > 0$$
, $e^{\sqrt{\ln(x)}} = o(x^{\alpha})$. $\beta = 0$

Use α instead of β

(b) For any
$$\alpha > 0$$
, $e^{\sqrt{\ln(x)}} = o(x^{\alpha})$.

Use α instead of $1/2$

(c) $\ln(x) = o(e^{\sqrt{\ln(x)}})$

(d) $\ln(x) = o(e^{\sqrt{\ln(x)}})$

(e) $\ln(x) = \lim_{x \to \infty} \frac{\ln(x)}{e^{\sqrt{\ln(x)}}} = \lim_{x \to \infty} \frac{2^{2}}{e^{\sqrt{\ln(x)}}}$

(e) $\lim_{x \to \infty} \frac{\ln(x)}{e^{\sqrt{\ln(x)}}} = \lim_{x \to \infty} \frac{2^{2}}{e^{\sqrt{\ln(x)}}}$

(g) $\lim_{x \to \infty} \frac{\ln(x)}{e^{\sqrt{\ln(x)}}} = \lim_{x \to \infty} \frac{2^{2}}{e^{\sqrt{\ln(x)}}}$

(g) $\lim_{x \to \infty} \frac{\ln(x)}{e^{\sqrt{\ln(x)}}} = \lim_{x \to \infty} \frac{2^{2}}{e^{\sqrt{\ln(x)}}}$

(g) $\lim_{x \to \infty} \frac{\ln(x)}{e^{\sqrt{\ln(x)}}} = \lim_{x \to \infty} \frac{2^{2}}{e^{\sqrt{\ln(x)}}}$

(harding in the fifther $e^{-\sqrt{\ln(x)}}$ in math.)

(g) $\lim_{x \to \infty} \frac{\ln(x)}{e^{\sqrt{\ln(x)}}} = \lim_{x \to \infty} \frac{2^{2}}{e^{\sqrt{\ln(x)}}}$

(g) $\lim_{x \to \infty} \frac{2^{2}}{e^{\sqrt{\ln(x)}}} = \lim_{x \to \infty} \frac{2^{2}}{e^{\sqrt{\ln(x)}}}$

(harding in the fifther $e^{-\sqrt{\ln(x)}}$ in math.)

(g) $\lim_{x \to \infty} \frac{2^{2}}{e^{\sqrt{\ln(x)}}} = \lim_{x \to \infty} \frac{2^{2}}{e^{\sqrt{\ln(x)}}} = \lim_{x$

$$0 \leq \lim_{x \to \infty} \frac{c^{x}}{c^{x}} = \lim_{x \to \infty} \left(\frac{c}{x}\right)^{x} \leq \lim_{x \to \infty} \left(\frac{c}{c+1}\right)^{x} = 0 = \lim_{x \to \infty} \frac{c^{x}}{c^{x}} = \lim_{x \to \infty} \left(\frac{c}{c}\right)^{x} \leq \lim_{x \to \infty} \left(\frac{c}{c+1}\right)^{x} = 0 = \lim_{x \to \infty} \frac{c^{x}}{c^{x}} = \lim_{x \to \infty} \left(\frac{c}{c}\right)^{x} \leq \lim_{x \to \infty} \left(\frac{c}{c+1}\right)^{x} = 0 = \lim_{x \to \infty} \frac{c^{x}}{c^{x}} = \lim_{x \to \infty} \left(\frac{c}{c}\right)^{x} \leq \lim_{x \to \infty} \left(\frac{c}{c}\right)^{x} = 0 = \lim_{x \to \infty} \frac{c}{c}$$