Math 199 CD2: Limit Definition of Derivative

September 6, 2021

1. Find the derivative of each function using the limit definition. Verify with differentiation rules.

(a)
$$f(x) = 3x^2 - 2x + 2$$

(b)
$$V(a) = \sqrt{2a+3}$$

(c)
$$f(x) = \frac{1}{x}$$

(d)
$$f(x) = \frac{x^2 + 1}{x - 2}$$

2. You will eventually learn the following rule of taking derivative:

$$(f(x) + g(x))' = f(x)' + g(x)'$$

Verify this rule with the limit definition

- 3. For a function f(x), define $f^+(x) = \lim_{h \to 0^+} \frac{f(x+h) f(x)}{h}$ and $f^-(x) = \lim_{h \to 0^-} \frac{f(x+h) f(x)}{h}$. We call $f^+(x)$ the right-derivative of f(x), and $f^-(x)$ the left-derivative of f(x).
 - (a) Why do these names make sense?
 - (b) For f(x) = |x|, find $f^{+}(0)$ and $f^{-}(0)$.
 - (c) Show $f^-(x) = \lim_{h \to 0^+} \frac{f(x) f(x-h)}{h}$.
 - (d) Graphically interpret f^+ and f^- .
 - (e) Find $f^+(0)$ and $f^-(0)$ for $f(x) = \begin{cases} 1, & x \ge 0, \\ 0, & x < 0 \end{cases}$. Interpret this graphically.

- (f) If f(x) is not continuous at a, what can you say about $f^+(a)$ and $f^-(a)$?
- (g) If f(x) is differentiable at a, what can you say about $f^+(a)$ and $f^-(a)$?
- (h) Find a and b so that f(x) is differentiable everywhere, where $f(x) = \begin{cases} ax + 2 & x \le 1 \\ x^2 + b & x > 1 \end{cases}$.
- 4. Find the point(s) at which the tangent line to the parabola $y = ax^2 + bx + c$ is horizontal. (Notice that the solution to this problem locates the "nose" of the parabola.)

5. [Hard Problem] Consider the function:

$$\begin{cases} x, & \text{if } x \text{ is rational} \\ 0, & \text{if } x \text{ is irrational} \end{cases}$$

Determine whether f is differentiable at 0.