
MATRIX SQUARE ROOT OF POLYNOMIALS

KOSMAS DIVERIS AND HIEU TRUNG VU

ABSTRACT. In this article we consider the matrix factorizations of a polynomial where the two
matrices apearing in the factorization are the same, which we call "matrix square roots." The main
result is that any polynomial in ℝ[𝑥1,⋯ , 𝑥𝑛] admits a matrix square root. Our proof is constructive
and provides an algorithm for constructing these matrices.
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1. INTRODUCTION

In this article we consider matrix factorizations of a polynomial 𝑓 in the ring

𝑆 = ℝ[𝑥1,⋯ , 𝑥𝑛]

These were first introduced b David Eisenbud in [2] to study modules over the quotient ring𝑆∕(𝑓 ).
These are known as the hypersurface rings as they are coordinate rings of the zero-locus of the
polynomial 𝑓 , which is a hypersurface in ℝ𝑛, denoted by 𝑍(𝑓 ).

Definition 1.1 ([2]). An 𝑛 × 𝑛 matrix factorization of a polynomial 𝑓 ∈ 𝑆 is a pair of 𝑛 × 𝑛
matrices (𝐴,𝐵) ∈ 𝑀𝑛(𝑆) so that 𝐴𝐵 = 𝑓𝐼𝑛, where 𝐼𝑛 is the 𝑛 × 𝑛 identity matrix

Note that the entries of the matrices 𝐴 and 𝐵 in the definition are polynomials from 𝑆. A 1× 1
matrix factorization, [𝑔]… [ℎ] = [𝑓 ] ios simply a factorization of 𝑓 into a product of polynomials,
so we see that matrix factorizations generalize the classical notion of factorization. In [2], it is
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shown that all polynomials, even irreducible polynomials, admits 𝑛 × 𝑛 matrix factorizations for
some 𝑛.

Example 1.2. The polynomial 𝑓 = 𝑥2
1 + 𝑥2

2 is irreducible in ℝ[𝑥1, 𝑥2], but it has a 2 × 2 matrix
factorization:

(1.1)

[

𝑥1 𝑥2

𝑥2 −𝑥1

][

𝑥1 𝑥2

𝑥2 −𝑥1

]

=

[

𝑥2
1 + 𝑥2

2 0
0 𝑥2

1 + 𝑥2
2

]

Algebraic geometry provides a variety of tools to connect geometric properties of a hypersur-
face 𝑍(𝑓 ) to its coordinates ring 𝑆∕(𝑓 ), and modules over this ring. In [2], Eisenbud takes these
connections a step further by establishing a correspondence between certain 𝑆∕(𝑓 )-modules and
matrix factorizations of 𝑓 . For the reader with some background in commutative algebra, we
recommend the texts [4] and [4] to see the ultility of this approach to examining singularities of
hypersurfaces illustrated. One of the most powerful aspects of this approach is that it allows one to
work with matrices, instead of modules, and thus to bring in more techniques from linear algebra
with fewer prerequisites from abstract algebra.

We would like to draw attention to the fact that in Example 1.2, the two matrices used to factor
𝑓 were actually the same. This phenomenon motivates the following definition:

Definition 1.3 (Matrix Square Root). An 𝑛 × 𝑛 matrix square root of a polynomial 𝑓 ∈ 𝑆 is an
𝑛 × 𝑛 matrix 𝐴 ∈ 𝑀𝑛(𝑆) such that 𝐴2 = 𝑓𝐼𝑛.

In addition to their connections with algebraic geometry, matrix square roots have also arisen
in the context of orthogonal designs, we refer the reader to [3] for these connections. While
polynomials in 𝑆 rarely have square roots in 𝑆, all polynomials admit matrix square roots, as the
next example illustrates.

Example 1.4. If 𝑓 ∈ 𝑆 is any polynomial, then 𝑓 has a 2 × 2 matrix square root:
[

0 𝑓
1 0

][

0 𝑓
1 0

]

=

[

𝑓 0
0 𝑓

]

This matrix square root, however, is not particularly "interesting" in that it does not shed any
new light on the polynomial 𝑓 (or the hypersurface 𝑍(𝑓 )). Fortunately, this needs not be the only
matrix square root of a polynomial. Indeed, while square roots of polynomials in 𝑆 are quite rare,
and when they do exist they are often rather unique, a polynomial will often admit many different
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matrix square square roots. This stems, in part, from the fact that 𝑆 is a unique factorization
domain, whereas 𝑀𝑛(𝑆) is not. The next example is provided to show two distinct 4 × 4 matrix
square roots of the sample polynomial.

Example 1.5. The following matrices are both 4 × 4 square roots of 𝑥3𝑦 + 𝑥𝑦3:

⎡

⎢

⎢

⎢

⎢

⎣

0 0 𝑥2 + 𝑦2 0
0 0 0 𝑥2 + 𝑦2

𝑥𝑦 0 0 0
0 𝑥𝑦 0 0

⎤

⎥

⎥

⎥

⎥

⎦

,

⎡

⎢

⎢

⎢

⎢

⎣

0 𝑥3 𝑥 0
𝑦 0 0 𝑥
𝑦3 0 0 𝑥
0 𝑦3 −𝑦 0

⎤

⎥

⎥

⎥

⎥

⎦

The main result of this paper, theorem 2.3, is that any polynomial 𝑓 ∈ 𝑆 admits "interesting"
matrix square roots. Our proof of this fact uses only techniques from elementary algebra. It is
also constructive and provides an algorithm for building matrix square roots of any polynomial 𝑓 .
The size of the matrix square roots we construct is also easily determined from the polynomial.
If 𝑛 is any natural number and the polynomial 𝑓 is expressed as the sum of 𝑘 monomials, then we
are able to build matrix square roots of size 2𝑘𝑛 × 2𝑘𝑛. If, however, one of the summads of 𝑓 is a
perfect square, then we are able to build matrix square roots of half of this size.

2. MAIN RESULT

We open with some preliminary observations about products of special block matrices that
allow us to build matrix square roots. The necessary background on block matrices can be found
in most introductory linear algebra textbooks.

We also make use of the fact that the matrices appearing in the matrix factorization commute
with each other,i.e. if 𝐴𝐵 = 𝑓𝐼𝑛, then 𝐵𝐴 = 𝑓𝐼𝑛. This is not assumed in the defintion of a matrix
factorization, but a proof of this can be found, for example, in Proposition 4 of [1].

Proposition 2.1. Assume 𝐴 is a 𝑛 × 𝑛 square root of 𝑓 and (𝐵,𝐶) is a 𝑛 × 𝑛 matrix factorization
of 𝑔. If 𝐴 commutes with both 𝐵 and 𝐶 , then

[

𝐴 𝐵
𝐶 −𝐴

]

is a 2𝑛 × 2𝑛 square root of 𝑓 + 𝑔.
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Proof. The hypotheses give the equations

𝐴2 = 𝑓𝐼𝑛, 𝐵𝐶 = 𝑔𝐼𝑛 = 𝐶𝐵,𝐴𝐵 − 𝐵𝐴 = 0, 𝐶𝐴 − 𝐴𝐶 = 0

Direct computation then gives the desired result:

(2.1)

[

𝐴 𝐵
𝐶 −𝐴

]2

=

[

𝐴2 + 𝐵𝐶 𝐴𝐵 − 𝐵𝐴
𝐶𝐴 − 𝐴𝐶 𝐵𝐶 + 𝐴2

]

=

[

(𝑓 + 𝑔)𝐼𝑛 0
0 (𝑓 + 𝑔)𝐼𝑛

]

□

We highlight a special case of this proposition in the following corollary, which is the key
ingredient in our construction of matrix square roots.

Corollary 2.2. Assume that 𝑓, 𝑔1, and ℎ1 are polynomials in 𝑆 and that 𝐴 is a 𝑛 × 𝑛 square root
of 𝑓 . Then:

[

𝐴 𝑔𝐼𝑛
ℎ𝐼𝑛 −𝐴

]

is a 2𝑛 × 2𝑛 square root of 𝑓 + 𝑔1ℎ1.

Proof. Since the matrices 𝐵 = 𝑔1𝐼𝑛 and 𝐶 = ℎ1𝐼𝑛 commute with all 𝑛 × 𝑛 matrices, and 𝐵𝐺 =
𝑔1ℎ1𝐼𝑛, this follows from the previous proposition. □

Any polynomial in 𝑓 ∈ 𝑆 can be expressed in the form 𝑓 = 𝑔1ℎ1+⋯+𝑔𝑛ℎ𝑛for some 𝑔𝑖, ℎ𝑖 ∈ 𝑆.
The next result provides a means to construct a matrix square root of the polynomial 𝑓 using the
polynomials 𝑔𝑖 and ℎ𝑖. Of course, such an expression of 𝑓 will produce different matrix square
roots.

Theorem 2.3. Let 𝑓𝑘 = 𝑔1ℎ1+⋯+𝑔𝑘ℎ𝑘 be a polynomial in 𝑆 and 𝑛 ∈ ℕ. Then 𝑓𝑘 has a 2𝑘𝑛×2𝑘𝑛
matrix square root whose enries are the polynomials 0, 𝑔𝑖, and ℎ𝑖 where 1 ≤ 𝑖 < 𝑘

Proof. We proceed by induction on 𝑘, the number of summands of 𝑓𝑘. In the case when 𝑘 = 1,
observe that the 2𝑛 × 2𝑛 matrix

𝐴1 =

[

0 𝑔1𝐼𝑛
ℎ1𝐼𝑛 0

]

is a square root of the polynomial 𝑓1 = 𝑔1ℎ1. This follows from Corollary 2.2, by taking 𝐴 = 0.
Note that the size of 𝐴1 is 2𝑛 × 2𝑛, and its only entries are 0, 𝑔1, ℎ1. Assume that for some 𝑗 ≥ 1
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we have constructed a 2𝑗𝑛×2𝑗𝑛 matrix square root, 𝐴𝑗 , for the polynomial 𝑓𝑗 , where whole entries
consist solely of the polynomials 0, 𝑔𝑖, ℎ𝑖 where 1 ≤ 𝑖 ≤ 𝑗. Then, the 2𝑗+1𝑛 × 2𝑗+1𝑛 matrix

𝐴𝑗+1 =

[

𝐴𝑗 𝑔𝑗+1𝐼2𝑗𝑛
ℎ𝑗+1𝐼2𝑗𝑛 −𝐴𝑗

]

is a square root of the polynomial 𝑓𝑗+1, again by Corollary 2.2. The only new entries in 𝐴𝑗+1 that
were not also entries of 𝐴𝑗 are 𝑔𝑗+1 and ℎ𝑗+1. By induction, after 𝑘 steps we obtain a square root
matrix 𝐴𝑘 of 𝑓𝑘 whose size is 2𝑘𝑛 × 2𝑘𝑛 and whose entries are 0, 𝑔𝑖, and ℎ𝑖 where 1 ≤ 𝑖 ≤ 𝑘, as
claimed. □

The polynomial 𝑥2
1 + 𝑥2

2 from example 1.2 is the sum of two terms. The matrix factorization
given in this example has size 2×2. Theorem 2.3, however, would only generate factorizations of
𝑓 of size at least 4×4. In this case, we can improve and build a smaller matrix square root because
one of the summands of 𝑓 actually has a 1 × 1 square roots in 𝑆. In fact, any time the polynomial
𝑓𝑘 has a summand that is a perfect square, then a slight modification of the above proof will yield
a matrix square root of half the size.

Theorem 2.4. Let 𝑓𝑘 = 𝑔21 + 𝑔2ℎ2 +⋯ + 𝑔𝑘ℎ𝑘 be a polynomial in 𝑆 and 𝑛 ∈ ℕ. Then 𝑓𝑘 has a
2𝑘−1𝑛 × 2𝑘−1𝑛 matrix square root whose entries are the polynomial 0, 𝑔𝑖 and ℎ𝑖 where 1 ≤ 𝑖 ≤ 𝑘

Proof. The induction step proceeds exactly the same as in the proof of theorem 2.3. Here we
treat only the base case, which is where the reduction in size occurs. This time, the 𝑛 × 𝑛 matrix
𝐴1 = 𝑔1𝐼𝑛 is easily seen to be a square root of the polynomial 𝑓1 = 𝑔21 . □

Remark 2.5. The readers familiar with ring theory may note that the only property of the polyno-
mial ring 𝑆 that we have used in our arguments so far is that it is a commutative ring. Thus, our
methods actually allow one to construct a matrix square root of any element in any commutative
ring

3. "INTERESTING" MATRIX SQUARE ROOTS

In the introduction we claimed that the matrix square root given in example 1.5 was not "inter-
esting". In fact, this is called trivial factorization in [2]. While is it evident that this factorization
does not shed new light on 𝑓 , the sense in which it is trivial can be made precise. Under Eisen-
bud’s correspondence between matrix factorization of 𝑓 and 𝑆∕(𝑓 )-modules, this factorization
corresponds to the free 𝑆∕(𝑓 )-module 𝑆∕(𝑓 )⊕ 0. The free 𝑆∕(𝑓 )-modules do not reveal much
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information about 𝑍(𝑓 ), so the algebraic geometers are most often interested in the modules
without the free summands. The matrix factorizations corresponding to these modules are called
reduced, and these are the ones we consider most interesting. Essentially, a matrix factorization
is reduced if one cannot perform invertible row and column operations, over 𝑀𝑛(𝑆), to transform
the matrices into new pair having a block in the form 𝐼𝑘, 𝑓𝐼𝑘 for some 𝑘. These reduced factor-
izations are the ones we consider "interesting".
In an important case, there is a very efficient test to determine if a matrix factorization is reduced,
which we now explain. Let 𝔪 ⊂ 𝑆 denote the polynomials whose constant term is zero. This
is actually a maximal ideal of 𝑆, 𝔪 = (𝑥1,… , 𝑥𝑛), consisting of each polynomial 𝑓 ∈ 𝑆 whose
hypersurface, 𝑍(𝑓 ), passes through the origin in ℝ𝑛. If 𝑓 ∈ 𝔪, then a matrix factorization of 𝑓
is reduced if and only if all of the entries appearing in the matrices are also in 𝔪, [2]. Indeed,
if all of the entries of a matrix 𝐴 lies in 𝔪, then any matrix obtained from 𝐴 by performing row
and columns operations must also contain entries in 𝔪, because it is an ideal. Thus, one cannot
obtain 1 as an entry in such a matrix, which would be necessary if 𝐴 were not reduced.
The next result refers to the product ideal of 𝔪 with itself, 𝔪2. This consists of all polynomials
in 𝑆 whose constant term and linear term are both zero. These are the elements of 𝔪 whose
corresponding hypersurface has a singularity at the origin (as its Jacobian matrix will be the zero
matrix). The takeaway of the next corollary is that any polynomial corresponding to these hyper-
surfaces has a reduced matrix square root.

Corollary 3.1. If 𝑓 ∈ 𝔪2, then 𝑓 has a square root matrix whose entries are all elements of 𝔪.

Proof. If 𝑓 ∈ 𝔪2, then 𝑓 maybe expressed as a sum of products of elements of 𝔪. That is, 𝑓 can
be expressed in the form 𝑓 = 𝑔1ℎ1+⋯+ 𝑔𝑘ℎ𝑘, where each 𝑔𝑖 and ℎ𝑖 are in 𝔪. Applying theorem
2.3 to 𝑓 yields a matrix square root of 𝑓 whose entries are 𝑔𝑖 and ℎ𝑖, which are in 𝔪. □
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